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Abstract

Background: Mutations in GJB2 gene are a major causes of deafness and their spectrum and prevalence are
specific for various populations. The well-known mutation c.35delG is more frequent in populations of Caucasian
origin. Data on the c.35delG prevalence in Russia are mainly restricted to the European part of this country. We
aimed to estimate the carrier frequency of c.35delG in Western Siberia and thereby update current data on the
c.35delG prevalence in Russia. According to a generally accepted hypothesis, c.35delG originated from a common
ancestor in the Middle East or the Mediterranean ~ 10,000–14,000 years ago and spread throughout Europe with
Neolithic migrations. To test the c.35delG common origin hypothesis, we have reconstructed haplotypes bearing
c.35delG and evaluated the approximate age of c.35delG in Siberia.

Methods: The carrier frequency of c.35delG was estimated in 122 unrelated hearing individuals living in Western
Siberia. For reconstruction of haplotypes bearing c.35delG, polymorphic D13S141, D13S175, D13S1853 flanking the
GJB2 gene, and intragenic rs3751385 were genotyped in deaf patients homozygous for c.35delG (n = 24) and in
unrelated healthy individuals negative for c.35delG (n = 67) living in Siberia.

Results: We present updated carrier rates for c.35delG in Russia complemented by new data on c.35delG carrier
frequency in Russians living in Western Siberia (4.1%). Two common D13S141-c.35delG-D13S175-D13S1853
haplotypes, 126-c.35delG-105-202 and 124-c.35delG-105-202, were reconstructed in the c.35delG homozygotes from
Siberia. Moreover, identical allelic composition of the two most frequent c.35delG haplotypes restricted by D13S141
and D13S175 was established in geographically remote regions: Siberia and Volga-Ural region (Russia) and Belarus
(Eastern Europe).

Conclusions: Distribution of the c.35delG carrier frequency in Russia is characterized by pronounced ethno-geographic
specificity with a downward trend from west to east. Comparative analysis of the c.35delG haplotypes supports a
common origin of c.35delG in some regions of Russia (Volga-Ural region and Siberia) and in Eastern Europe (Belarus).
A rough estimation of the c.35delG age in Siberia (about 4800 to 8100 years ago) probably reflects the early formation
stages of the modern European population (including the European part of the contemporary territory of Russia) since
the settlement of Siberia by Russians started only at the end of sixteenth century.
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Background
Pathogenic variants in the GJB2 gene (MIM 121011,
chromosome 13q11q12) are the most common causes of
autosomal recessive non-syndromic hearing loss in vari-
ous populations. Over 300 pathogenic variations in GJB2
have been reported in the Human Gene Mutation
Database [1]. Many of them have high ethno-geographic
specificity in prevalence [2], which for certain ethnic
groups is being attributed to a founder effect [3–11].
The recessive pathogenic GJB2 variant c.35delG

(p.Gly12Valfs*2) (NM_004004.5) is known to be prevalent
in deaf patients of Caucasian origin [2, 12, 13]. Previous
studies have revealed the c.35delG carrier frequency to be
around 1 in 50 overall in Europe [12], reaching 1 in 31 in
Southern Europe [14]. In meta-analysis of the data pub-
lished up to 2008, mean carrier frequencies of c.35delG
were found to be 1.89, 1.52, 0.64, 1, and 0.64% for Euro-
pean, American, Asian, Oceanic, and African populations,
respectively [13]. The c.35delG is a deletion of one guan-
ine (G) from a string of six (GGGGGG) in the GJB2 cod-
ing sequence resulting in a frameshift and termination of
the Cx26 protein sequence at amino acid 13 (p.Gly12-
Valfs*2). The occurrence of c.35delG as a possible “hot
spot” caused by DNA polymerase “slippage” was previ-
ously assumed to be an explanation of the high prevalence
of this pathogenic variant in the GJB2 gene [5, 15, 16].
Nevertheless, convincing evidence emerged that the
founder effect plays an important role in the prevalence
and accumulation of c.35delG in populations of Caucasian
origin since lower rates or absence of c.35delG are observed
in other populations. According to a generally accepted hy-
pothesis, c.35delG originated from a common ancestor in
the Middle East or the Mediterranean approximately
10,000–14,000 years ago and spread throughout Europe
with Neolithic migrations. Specific c.35delG prevalence and
discovery of common STR- and SNP-haplotypes bearing
the c.35delG mutation in Mediterranean, Middle Eastern,
North-European populations, and in individuals of Euro-
pean origin in the USA support this hypothesis [14, 17–27].
Relevant data were also obtained for populations of the
Volga-Ural region of Russia [28] and Belarus [29].
The c.35delG predominance in deaf patients was re-

ported in several studies conducted in the European part
of Russia [30–38]. In the ethnically heterogeneous popula-
tion of Siberia, epidemiological and molecular genetic
studies of hereditary deafness are currently limited to re-
gions of the Altai Republic, the Tuva Republic (Southern
Siberia), and the Sakha Republic (Yakutia, Eastern Siberia)
[39–41]. The presence of c.35delG in a homozygous or
compound-heterozygous state was the main cause of her-
editary hearing loss in deaf Russian patients living in these
regions in contrast to deaf patients belonging to Siberian
indigenous peoples (Altaians, Tuvinians, Yakuts) who were
negative for the c.35delG mutation [39–41].

This study presents an updated summary of published
data on the c.35delG (p.Gly12Valfs*2) prevalence in
Russia complemented by our original data on the
c.35delG carrier frequency in Western Siberia. To test
the c.35delG common origin hypothesis, we genotyped
polymorphic markers flanking the GJB2 gene and recon-
structed haplotypes bearing c.35delG in deaf patients
from Siberia homozygous for c.35delG.

Methods
Subjects
Twenty-four unrelated patients (mostly Russians) with
congenital or early onset profound hearing loss living in
several Siberian regions (Altai, Tuva, Yakutia) were pre-
viously found to be homozygous for c.35delG [39–41].
The carrier frequency of c.35delG was estimated in 122
unrelated normal hearing individuals (mostly Russians)
from the Novosibirsk region (Western Siberia). Genotyp-
ing of three polymorphic short tandem repeat (STR)
markers D13S141, D13S175, D13S1853 and an intra-
genic SNP (rs3751385) was performed in 24 unrelated
deaf patients homozygous for c.35delG and in 67 unre-
lated healthy individuals from the Novosibirsk region
(Western Siberia) who were negative for c.35delG.

C.35delG screening and analysis of genetic markers
All primers and genotyping methods are summarized in
Table 1. The c.35delG screening was performed according
to [42]. Polymorphic STR markers flanking the GJB2 gene:
D13S141 (~ 39.2 kb centromeric to c.35delG), D13S175
and D13S1853 (~ 84.8 kb and ~ 277.1 kb telomeric to
c.35delG, respectively), and intragenic SNP (rs3751385) lo-
cating ~ 0.7 kb centromeric from c.35delG were used to re-
construct haplotypes bearing c.35delG. These markers were
used previously in relevant studies and were therefore
chosen to keep compatibility and enable comparative ana-
lysis with already available data. Genotyping of D13S141,
D13S175 and D13S1853 was performed in the SB RAS
Genomics Core Facility (Institute of Chemical Biology and
Fundamental Medicine SB RAS, Novosibirsk, Russia).

Statistical analysis
Haplotype frequencies were estimated from observed geno-
type data using Expectation–Maximization (EM) algorithm
of the Arlequin 3.5.2.2 software [43]. Fisher’s exact test (sig-
nificance level 0.05) was used to compare the allelic and
haplotype distributions. Linkage disequilibrium between
the marker alleles and c.35delG as well as the age of
c.35delG were estimated as described previously [44, 45].
The linkage disequilibrium was calculated as

δ ¼ Pd� Pnð Þ= 1� Pnð Þ;

where δ is the measure of linkage disequilibrium, Pd is
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the frequency of the marker allele among all chromo-
somes carrying c.35delG, and Pn is the frequency of the
same allele among chromosomes without c.35delG. The
age of c.35delG was estimated as

g ¼ log 1�Q= 1−Pnð Þ½ �= log 1−Ѳð Þ;

where g is the number of generations from the moment
of the c.35delG appearance to the present, Q is the share
of chromosomes carrying c.35delG unlinked with the
founder haplotype, Pn is the frequency of the allele in-
cluded in founder haplotype in the population, and Ѳ is
the recombinant fraction calculated from the physical
distance of the markers from the c.35delG location on
the assumption of 1 cM = 1000 kb.

Results
Carrier frequency of c.35delG in Russia
Screening of c.35delG in unrelated hearing individuals
(mostly Russians) living in the Novosibirsk region
(Western Siberia) has revealed 5 out of 122 examined
subjects to be c.35delG carriers (4.1%). These data sup-
plement current information about the c.35delG preva-
lence in Russia. We have analyzed all available literature
data (published up to 2018) on c.35delG carrier frequen-
cies in Russia and in some countries of the former Soviet
Union (USSR) which populations undoubtedly contrib-
uted to the contemporary population of Russia. The
distribution of c.35delG carrier frequencies is presented
in Fig. 1. High c.35delG frequencies are observed in the
populations of north-western and central parts of Russia
with downward trend from west to east.

Common haplotypes associated with c.35delG in Siberia
Certain polymorphic STR markers flanking GJB2 are trad-
itionally used for c.35delG haplotype analysis: centromeric
D13S141 (~ 39.1 kb from c.35delG), telomeric D13S175
(~ 84.8 kb from c.35delG) and distal telomeric D13S143

(~ 1.5 Mb from c.35delG) [17, 19–29]. Since c.35delG is
presumably a very old mutation, a common ancestral
haplotype could be observed in even a closest chromo-
somal locus, therefore instead of the more distal D13S143,
we chose the marker D13S1853 that was closer to
c.35delG (~ 277.1 kb telomeric), making the haplotype re-
gion (D13S141-c.35delG-D13S175-D13S1853) span over
~ 316 kb. Results of D13S141, D13S175, D13S1853 and
rs3751385 genotyping in the c.35delG homozygotes and
in control individuals from Siberia are summarized in
Table 2. Significant differences in allele frequencies of
markers D13S141, D13S175, D13S1853 are observed
between the c.35delG homozygotes and control subjects
(Table 2). Allele T of rs3751385 was only identified in the
c.35delG homozygotes showing significant differences (p
< 10− 21) between patients and control samples. A strong
association of allele T (rs3751385) with c.35delG was also
shown in previous studies [18, 22–25, 27, 29]. Twelve and
thirty-nine D13S141-D13S175-D13S1853 haplotypes were
reconstructed for c.35delG homozygotes and for control
samples from Siberia, respectively (Fig. 2A). Two haplo-
types, 126–105-202 (37.5%) and 124–105-202 (25.0%),
were the most common (52.5% in total) among chromo-
somes bearing c.35delG in contrast with 7.8% for
126–105-202 and 8.5% for 124–105-202 among wild-type
chromosomes (p < 10− 2–10− 5). Based on observed link-
age disequilibrium for D13S175 and D13S1853 alleles
(Table 2), we have roughly estimated the age of c.35delG
in Siberia as ~ 4800 years (D13S1853) or ~ 8100 years
(D13S175). It should be noted that an accurate calculation
of the c.35delG age is difficult because of many uncertain-
ties, first of all, unknown true recombination frequency of
this chromosomal region [18, 22].

Discussion
Distribution of the c.35delG carrier frequency in Russia
is characterized by pronounced ethno-geographic speci-
ficity (Fig. 1). High c.35delG rates are typical for

Table 1 Primer sequences for PCR, fragment analysis and Sanger sequencing

c.35delG and studied markers (localization, GRCh38.p12)a Primer sequences Methods of detection

c.35delG
(GJB2)
(13:20189547)

F: 5′-GGTGAGGTTGTGTAAGAGTTGG-3′
R: 5’-CTGGTGGAGTGTTTGTTCC*CAC-3’

PCR-mediated site-directed mutagenesis
(PSDM) with use of Bsc4 I

D13S141b

(13:20150320–20,150,445)
F: 5’-GTCCTCCCGGCCTAGTCTTA-3’ (6-FAM)
R: 5’-ACCACGGAGCAAAGAACAGA-3’

Fragment analysis (GeneScan 500 LIZ) on
ABI 3130XL (Applied Biosystems)

D13S175b

(13:20274367–20,274,479)
F: 5’-TATTGGATACTTGAATCTGCTG-3’ (PET)
R: 5’-TGCATCACCTCACATAGGTTA-3’

D13S1853b

(13:20466607–20,466,800)
F: 5’- CAGACTGGCACAAACTTAACTG −3’ (6-FAM)
R: 5’- TGTACATCTCTTCTTACATTCATGT − 3’

rs3751385
(13:20188817)

F: 5’-GGCTGGTGAAGTGCAACG-3′
R: 5’-GTAAGCAAACAAACTTTTGAAGTAG-3’

PCR-RFLP analysis with use of Nhe I

aLocalization was taken from the Ensembl Genome browser [53]; b - Specific primer sequences for PCR amplification of microsatellites D13S141, D13S175, and
D13S1853 were obtained from the Ensembl genome browser and the NCBI Probe Database [53, 54], one from each primer pairs was labeled with the
fluorescent dyes
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populations of Caucasian origin in north-western part of
Russia (up to 7.5% in the Kaliningrad Oblast’ and 5.9%
in the Leningrad Oblast’) [46]. The contemporary popu-
lation of the Kaliningrad Oblast’ represented mainly by
Russians (about 80%) was formed as a result of large-scale
post-war (after 1945) migration from European regions of
the former USSR. A high carrier frequency of c.35delG in
rural areas of the Leningrad Oblast’ (5.9%) could probably
be attributed to indigenous Finno-Ugric Vepsians, correl-
ating with high c.35delG rates reported for other
Finno-Ugrics: 4.4–4.5% in Estonians [12, 47], 5.7–6.2% in
Mordvins [30, 48]. The highest carrier frequencies of
c.35delG in the Caucasus are observed in Abkhazians
(3.8%) [48] and Armenians (3.7%) [49]. Low carrier fre-
quencies of c.35delG or its absence were observed among
Turkic-speaking peoples of Volga-Ural region (Tatars,

Bashkirs, Chuvashes), Siberia (Altaians, Tuvinians, Ya-
kuts), Central Asia (Kazakhs, Uighurs, Uzbeks), and also
in Mongolic-speaking Buryats (Siberia) [39–41, 48, 50]. In
Siberia, the c.35delG carrier frequency in Russians varies
from 4.1% in Western Siberia (this study) to 2.5% in
Yakutia (Eastern Siberia) [41].
Haplotype (D13S141-rs3751385-D13S175-D13S1853)

analysis of chromosome 13 in c.35delG homozygous
deaf Russian patients from Siberia revealed the two
most common haplotypes (126-T-c.35delG-105-202
and 124-T-c.35delG-105-202). It is interesting to com-
pare the common c.35delG haplotypes identified in Siberia
with available relevant data for other populations [19, 21,
23–26, 28, 29] (Table 3). Such comparisons are to some
extent possible for the c.35delG haplotypes flanked by
D13S141 and D13S175 (~ 124 kb). For these markers, the

Fig. 1 Distribution of the c.35delG carrier frequency on the territory of Russia and in some countries of the former Soviet Union. The c.35delG
carrier frequencies (%) were obtained from all available data published up to 2018 (Additional file 1: Table S1). Codes from 1 to 36 indicate analyzed
samples (region under study and/or ethnicity which were indicated in the original publications). In some cases, c.35delG carrier frequency was
calculated by us from the data given in original publications. The maximum value of the c.35delG carrier frequency is used for the figure if there are
several data sets for a region or an ethnically stratified sample. Codes 1–4 – Northern and Eastern Europe: 1 – Estonia (4.4–4.5%), 2 – Lithuania (1.0%),
3 – Belarus (3.4–6.2%), 4 – Ukraine (3.3–4.1%); 5–8 - North-Western part of Russia: 5 – residents of Kaliningrad and Kaliningradskaya Oblast’ (7.5%), 6 -
residents of Pskov and Pskovskaya Oblast’ (2.0–4.7%), 7 - residents of St. Petersburg and Leningradskaya Oblast’ (3.3–5.9%), 8 - residents of Arkhangelsk
and Arkhangelskaya Oblast’ (5.0%); 9–10 - Central part of Russia: 9 – residents of different regions (3.8–5.1%); 10 – Russians (Kirovskaya Oblast’) (3.8%);
11–19 - Volga-Ural region of Russia: 11 – Komi (0%), 12 - Mari (2.0–2.6%), 13 - Udmurts (0.5–3.7%), 14 – Mordvins (5.7–6.2%), 15 – Chuvashes (0–
2.6%), 16 - Russians (5.0%), 17 - Tatars (1.0–2.6%), 18 - Bashkirs (0–3.6%), 19 – Russians (Ekaterinburg) (2.2%); 20–25 – Siberia: 20 - Russians (Novosibirsk,
Western Siberia) (4.1%), 21 – Altaians (0%), 22 – Tuvinians (0%); 23 - Buryats (0%); 24 - Yakuts (0.4–1.0%), 25 - Russians (Yakutia, Eastern Siberia) (2.5%);
26–31 - South-Western part of Russia (including North Caucasus): 26 - residents of Rostovskya Oblast’ (Russians) (2.9%), 27 – Cherkessians (1.3–2.0%),
28 – Karachays (0.3%), 29 - Ingush (0–2.0%), 30 - Chechens (0–0.7%), 31- Avars (0%); 32–33 - South Caucasus: 32 – Abkhazians (3.8%), 33 – Armenians
(3.7%); 34–36 - Central Asia: 34 - Uzbeks (0%), 35 - Kazakhs (0.8%), 36 - Uighurs (0.9%)
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total share of two common c.35delG haplotypes in Siberia,
126-T-c.35delG-105 (56.3%, 27 of 48 chromosomes) and
124-T-c.35delG-105 (29.2%, 14 of 48 chromosomes),
reaches 85.5% (Fig. 2B). Unfortunately, unified classifica-
tion of the D13S141 and D13S175 alleles based on their
size in nucleotides or number of dinucleotide (CA) repeats
is absent due to different genotyping methods or simple
numerical designations for alleles used in previous studies,
making accurate comparative analysis hardly possible.
Nonetheless, the 105 bp long allele of D13S175 was de-
tected in the most common c.35delG haplotypes in the

majority of studies while a broad variety of alleles was ob-
served for D13S141. We were able to compare both allelic
size in nucleotides (determined by fragment analysis) and
numbers of CA repeats (detected by Sanger sequencing)
in two most frequent D13S141 alleles in the c.35delG
homozygotes from Siberia (analyzed in this study),
Volga-Ural region of Russia (kindly provided by L.
Dzhemileva [28]), and Belarus [29]. Fourteen CA re-
peats (CA14) were found in D13S141 alleles 126, 127,
and 125 while thirteen CA repeats (CA13) were found
in D13S141 alleles 124, 125, and 123 in DNA samples

Fig. 2 The D13S141-D13S175-D13S1853 haplotypes in studied samples. a Distribution of the D13S141-D13S175-D13S1853 haplotypes reconstructed
by the Arlequin software (EM algorithm) in the c.35delG homozygotes (pink bars) and in the control samples (green bars) (see explanation in text).
n – number of haplotypes. b The D13S141-rs3751385-c.35delG-D13S175-D13S1853 haplotypes found in the c.35delG homozygotes. N - number of
individuals. The most frequent haplotypes are highlighted in color: 126-T-105-202 – by red, 124-T-105-202 – by blue; nt - not tested

Table 3 The most common D13S141-c.35delG-D13S175 haplotypes in different populations

Common haplotypes
D13S141-c.35delG-D13S175 (%)

Geographical region (Ethnicity) References

126 a-105 (56.3%), 124b-105 (29.2%) Siberia, Russia (mostly Russians) this study

125 a-105 (67.9%)c, 123b-105 (12.5%)c Volga-Ural region of Russia (mostly Russians and Tatars) [28]

127 a-105 (71.8%), 125b-105 (18.2%) Belarus [29]

3–4 (90%)c

3–4 (100%)c
Palestine
Israel

[19]

2–6 (34.5%)c, 3–5 (26.9%)c

2–5 (42.9%)c, 3–5 (33.3%)c
Eastern Black Sea region, Turkey
Other regions of Turkey

[21]

5 (127)-4 (105) (43%),
5 (127)-4 (105) / 4 (125)-4 (105) (18%)

Anatolia, Turkey [23]

125–105 (83.3%)c, 123–105 (10.0%)c Morocco [24]

127–105 (61.5%)c, 125–105 (15.6%)c

127–105 (60.3%)c, 125–105 (26.8%)c
Spain
Greece

[26]

Allele destinations are taken from original sources. a– fourteen CA repeats (CA14) was revealed by Sanger sequencing; b– thirteen CA repeats (CA13) was revealed
by Sanger sequencing; c- frequencies of haplotypes were calculated on the basis of the data given in original sources [19, 21, 24, 26]
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from Siberia, Belarus, and Volga-Ural region, respectively
(Table 3). Thus, the identity of allelic composition of two
most frequent haplotypes D13S141-c.35delG-D13S175
(~ 124 kb) was revealed in these geographically re-
mote regions (Table 3). In addition, we assume that
the conservative region of c.35delG haplotypes from
Siberia may span longer being flanked by D13S141
and D13S1853 (~ 316 kb).
The contemporary Siberian population of Caucasian

origin (mostly Russians) was formed as a result of mul-
tiple migration flows from the European part of Russia
that started from the first settlement of Siberia by Rus-
sians at the end of sixteenth century [51]. Our rough
dating of c.35delG expansion into Siberia (about 4800–
8100 years ago) could be a reflection of complex pro-
cesses of early formation stages of the modern European
population (including the European part of Russia).
These data do not contradict the earlier hypothesis
about the c.35delG occurrence in the Middle East or the
Mediterranean approximately 10,000–14,000 years ago
followed by its spreading with migration flows across
Europe [14, 17–27]. However, taking into account the
current data on three ancient components in the origin
of modern Europeans [52], it cannot be ruled out that
c.35delG could also have independently originated
among any ancient populations of North-West Europe
or anywhere else.

Conclusions
Distribution of the c.35delG carrier frequency in Russia is
characterized by pronounced ethno-geographic specificity.
High frequencies of c.35delG are observed in the popula-
tions living in north-western and central parts of Russia
with a downward trend from west to east. The territory of
Siberia can be assumed as the north-eastern geographic
“end point” of the c.35delG prevalence in Eurasia. Com-
parative analysis of the c.35delG haplotypes supports the
common origin of c.35delG in some regions of Russia
(Siberia and Volga-Ural region) and in Eastern Europe
(Belarus). A thorough study of the haplotypes associated
with c.35delG in populations from different world regions
could further elucidate its origin and age.
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